СЗМ Раман Нано ИК системы
Модульные СЗМ
Автоматизированные СЗМ
Специализированные СЗМ
 
 

2.2 Силовое взаимодействие зонда с поверхностью

2.2.5 Магнитное взаимодействие

Атомно-силовой микроскоп может использоваться для исследования магнитных полей на поверхности образца. Такие методики объединяются под названием МСМ (магнитно-силовая микроскопия). В них используются специальные кантилеверы, которые покрыты магнитной пленкой. При взаимодействии с магнитным полем образца такой кантилевер отклоняется. Могут существовать следующие типы кантилеверов: диамагнитные, парамагнитные [1], суперпарамагнитные [2] и ферромагнитные (магнитожесткие [3] и магнитомягкие [4]).

Здесь мы кратко напомним об этих трех типах магнетиков, рассмотрев диамагнетизм, парамагнетизм и ферромагнетизм на феноменологическом уровне. Заинтересованных же отошлем к более серьезной литературе, например, [5, 6, 7].

Магнитные свойства вещества описываются вектором намагниченности . Его связь с напряженностью магнитного поля задается формулой [8,9]:

(1)
где – магнитная восприимчивость вещества. В свою очередь, напряженность магнитного поля связана с вектором магнитной индукции и вектором намагничивания следующим образом:
(2)

 

Подставляя (1) в (2), получим:
(3)
где – магнитная проницаемость вещества. Таким образом, магнитные свойства вещества описываются одним независимым параметром – или .

Диа- и парамагнетизм.

Атомы многих веществ не имеют постоянных магнитных моментов, или, вернее, все спиновые и орбитальные магнитные моменты внутри атома уравновешены так, что суммарный магнитный момент равен нулю. Если наложить магнитное поле, то внутри атома будут генерироваться слабые дополнительные токи. В соответствии с законом Ленца они будут индицироваться так, чтобы уменьшить магнитное поле, и наведенный магнитный момент атомов направлен навстречу магнитному полю. Таков механизм диамагнетизма.

Магнитная восприимчивость и магнитная проницаемость для диамагнетиков:

(4)
(5)
где – число атомов в единице объема, – число электронов в атоме, и – заряд и масса электрона, – скорость света, – средний квадрат расстояния электрона до ядра. Энергия теплового движения слишком мала, чтобы изменить внутреннее (квантованное) состояние атома. Поэтому для диамагнетиков и не должны зависеть от температуры. Обратим внимание, что и, тем самым, .

 

К диамагнетикам относятся, например, кислород, алюминий, платина, хлористое железо – , благородные газы и т.д.

Однако существуют такие вещества, атомы которых обладают магнитным моментом, спиновым или орбитальным. Таким образом, кроме диамагнитного эффекта (а он всегда присутствует) есть возможность выстраивания индивидуальных атомных моментов в одном направлении. Магнитные моменты ориентируются в направлении магнитного поля, усиливая его.

Парамагнетизм, вообще говоря, довольно слаб, потому что выстраивающие силы относительно малы по сравнению с силами теплового движения, которые стараются разрушить упорядочивание. Отсюда следует, что парамагнетизм особо чувствителен к температуре. Эффект парамагнетизма тем сильнее, чем ниже температура.

Пусть – магнитный момент атома, – магнитная индукция, – число атомов в единице объема, – константа Больцмана, – температура. Тогда для парамагнетиков в слабых полях – , когда зависимость вектора намагничивания от напряженности магнитного поля линейна, магнитная восприимчивость и магнитная проницаемость равны:

(6)
(7)
Обратно пропорциональная зависимость восприимчивости от абсолютной температуры (6) носит название закона Кюри. Заметим, что для парамагнетиков и, тем самым, .

 

В сильных полях намагничивание приходит в состояние насыщение, когда все магнитные моменты устанавливаются параллельно полю:

(8)

 

Так как диамагнетизм проявляется во всех веществах, он частично или полностью компенсирует парамагнетизм за счет противоположного по знаку вклада в восприимчивость. Поэтому для материалов с атомами, имеющими магнитный момент, можно говорить лишь о преобладании диа- или парамагнитных свойств в веществе, причем их баланс зависит от температуры. К парамагнетикам относятся, например, азот, углекислота, вода, серебро, висмут и т.д.

Ферромагнетизм.

В ферромагнетиках эффект упорядочения магнитных моментов проявляется во много раз сильнее, чем в диа- и парамагнетиках. Ферромагнетизм определяется коллективным взаимодействием атомных магнитных моментов, находящимися в состоянии с нарушенной симметрией (фазовый переход второго рода) и образующих магнитные домены. Ферромагнетиками называются тела, которые могут обладать спонтанной намагниченностью, то есть намагничены уже в отсутствие магнитного поля. Типичными представителями ферромагнетиков являются переходные металлы: железо, кобальт, никель и многие их сплавы. Ферромагнетизмом обладают некоторые редкоземельные элементы (гадолиний, тербий, диспрозий, гольмий, эрбий, туллий).

Характерной особенностью ферромагнетиков является сложная нелинейная зависимость между и или между и . Характер этой зависимости представлен на рис. 1 и 2.

Рис. 1.  Зависимость намагничивания от напряженности магнитного поля. Рис. 2.  Зависимость магнитной индукции от напряженности магнитного поля.

По мере возрастания намагниченность сначала быстро увеличивается, а затем приходит к насыщению и остается практически постоянной: (насыщение), то есть кривая переходит в горизонтальную прямую. Магнитная индукция также растет с увеличением поля , а в состоянии насыщения , то есть кривая переходит в прямую, наклоненную под углом (если и откладывать на осях координат в одинаковом масштабе).

 

Магнитная восприимчивость и магнитная проницаемость уже зависят не только от свойств вещества и температуры, как у диа- и парамагнетиков, а являются функциями напряженности поля и, более того, определяется его историей.

Восприимчивость и проницаемость сначала возрастают с , затем проходят через максимум, и, наконец, в сильных полях, когда достигнуто насыщение, стремится к единице (рис.3), а – к нулю.

Рис. 3.  Зависимость магнитной восприимчивости от напряженности магнитного поля.

Значения в максимуме у большинства ферромагнетиков при обычных температурах составляют многие сотни и тысячи единиц.

Вторая характерная особенность ферромагнетиков состоит в том, что для них зависимость от или от не однозначна, а определяется предшествующей историей намагничивания ферромагнитного образца. Это явление называется магнитным гистерезисом. Изображенная на рисунке 4 замкнутая кривая называется петлей гистерезиса, а кривая – предельной (наибольшей) петлей гистерезиса.

Рис. 4.  Петля гистерезиса.

При индукция не обращается в нуль, а изображается отрезком . Ему соответствует остаточное намагничивание . С наличием такого остаточного намагничивания связано существование постоянных магнитов. Для того, чтобы размагнитить образец, надо довести кривую размагничивания до точки или . Этим точкам соответствует магнитное поле . Оно называется коэрцитивной силой ферромагнетика. Значения остаточного намагничивания и коэрцитивной силы для разных ферромагнетиков меняются в широких пределах. Для мягкого железа петля гистерезиса узкая (коэрцитивная сила мала), для стали и всех материалов, идущих на изготовление магнитов, – широкая (коэрцитивная сила велика). Например, для кобальта и его сплавов, которые используются для покрытия магнитожестких кантилеверов, характерная величина коэрцитивной силы составляет 400 эрстед. С другой стороны, магнитное поле зонда в целом ряде случаев может оказаться слишком большим, что может приводить к искажению или даже разрушению исследуемой магнитной структуры. Для этих целей используют зонды с покрытием . Совершенно такой же характер имеет петля гистерезиса, когда по вертикальной оси откладывается не индукция , а намагничивание .


Выводы.

  • Вещества по их поведению в магнитном поле подразделяют на три основных типа: диамагнитные, парамагнитные и ферромагнитные.
  • Диамагнитные свойства проявляют все вещества. Суть эффекта – в возникновении индуцированных внутриатомных токов, которые уменьшают индукцию магнитного поля в веществе. Магнитная восприимчивость диамагнетиков отрицательна.
  • Парамагнитные свойства могут проявлять вещества с атомами, имеющими магнитный момент. Магнитная восприимчивость при этом положительна и уменьшается с ростом температуры.
  • Ферромагнетизм является очень сильным коллективным эффектом. Причем магнитная восприимчивость и проницаемость вещества становится неоднозначными функциями поля и зависят от его истории. Характерные ферромагнитные явления – спонтанная намагниченность и гистерезис намагниченности. Коэрцитивная сила магнитожестких кантилеверов (с кобальтовым покрытием) составляет порядка 400 эрстед, а магнитомягких (с покрытием ) – менее 10 эрстед.

Литература.

  1. O. Teschke, M.U. Kleinke, M.E.R. Dotto et al, J. Appl. Phys. 94, 1 (2003).
  2. P.F. Hopkins, J. Moreland, S.S. Malhotra et al, J. Appl. Phys. 79, 6448 (1996).
  3. H.J. Mamin, D. Rugar, P. Gruetter et al, Bull. Am. Phys. Soc. 35, 420 (1990).
  4. P. Grutter, D. Rugar, H.J. Mamin et al, Appl. Phys. Lett. 57, 1820 (1990).
  5. Тикадзуми С. Физика ферромагнетизма. I часть. – М.: Мир, 1987. – 302 с.;
    Тикадзуми С. Физика ферромагнетизма. II часть. – М.: Мир, 1987. – 420 с.
  6. Уайт Р.М. Квантовая теория магнетизма. – М.: Мир, 1972.
  7. Дорфман Я.Г. Диамагнетизм и химическая связь. – М.: Физматгиз, 1961.
  8. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике: Физика сплошных сред. – М.: Мир, 1977. – 300 с.
  9. Сивухин Д.В. Курс общей физики: Электричество. – М.: Наука, 1983. – 687 с.
 
 
Copyright © 2015 - 2017, NT-MDT SI